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Abstract—Downlink data rates can vary significantly in cellular
networks, with a potentially non-negligible effect on the user
experience. Content providers address this problem by using
different representations (e.g., picture resolution, video resolution
and rate) of the same content and switch among these based
on measurements collected during the connection. If it were
possible to know the achievable data rate before the connection
establishment, content providers could choose the most appropri-
ate representation from the very beginning. We have conducted
a measurement campaign involving 60 users connected to a
production network in France, to determine whether it is possible
to predict the achievable data rate using measurements collected,
before establishing the connection to the content provider, on the
operator’s network and on the mobile node. We show that it is
indeed possible to exploit these measurements to predict, with a
reasonable accuracy, the achievable data rate.

I. INTRODUCTION

In cellular networks, Quality of Service (QoS), in particular
throughput, is especially sensitive to the context of use. To
deal with changing QoS, content providers implement adaptive
delivery strategies, where the quality and the characteristics
of the delivered content are adjusted to match the achievable
QoS of each user. These adaptive strategies are reactive: the
characteristics of the content delivered at time t are based
on measurements collected between the beginning of the
connection and t.

Yet, content providers take some key decisions at the
beginning of the delivery. For instance, most web services
have several style sheets for their web pages, with a variable
number of elements and information. The decision of which
style sheet to deliver should be taken at the very beginning of
the connection, even though no past throughput observation is
available. Another example is adaptive video streaming. The
video is divided into several chunks, and each chunk encoded
at several bit-rate corresponding to different quality levels.
Throughout the delivery, the client selects the highest quality
representation with respect to an estimation of the available
throughput based on the most recent history. At the very
beginning, though, no such history is available. The delivery
often starts with a medium or low quality representation to be
on the safe side [1].

In both cases, content providers could avoid this guess
work if they could get a reasonably accurate estimate of the
achievable data rate with a given client. This estimate does not
need to be extremely precise. Getting the order of magnitude
can already be enough in most cases.

Several authors have proposed methods to predict the
achievable data rate for a connection in a cellular network
based on measurements collected during the connection itself.
By their very nature, such methods cannot be used at the
beginning of the connection. These methods use measurements
collected over a certain time period, from a few milliseconds
to a few minutes to make predictions over similar time scales.
Some recent proposals have addressed throughput predictions
based on the information about the radio link status [2]. This
information is available at the mobile phone of the end-user; it
allows thus instantaneous throughput prediction. However, the
authors study accurate short-term prediction (a few hundreds
of milliseconds at most), while the needs of content providers
are also for rough throughput estimation at the scale of a few
seconds (the length of a video chunk typically ranges from 2
to 10 seconds). Other proposals rely on instant measurements
at the physical layer or on traffic monitoring at the cell level to
infer the bandwidth of a user but they cannot accurately predict
the achievable throughput for a connection, as this value can
depend on a combination of all these factors.

In this paper we study instantaneous (i.e. history-less)
prediction of the achievable throughput of a connection over
a period of a few seconds. We are interested in identifying the
set of information that enable relatively accurate predictions.
Radio link information can be collected on the User Equip-
ments (UEs) , e.g., Received Signal Strength Indicator (RSSI),
Reference Signal Received Quality (RSRQ), and Signal to
Interference and Noise Ratio (SINR). Context information can
also be collected at UE: location by Global Positioning System
(GPS) coordinates, speed, terminal category and frequency
band used. Finally, the network operator can offer information
about the cellular network performance, including the average
cell throughput, the average number of users, the connection
success rate and the Block Error Ratio (BLER). One of the
questions we address is whether this latter set of information
brings significant improvement to the prediction.

We present and analyse the results of a measurement cam-
paign involving a total of 5,700 connections over 350 different
cells from a production network. We use supervised machine
learning techniques to analyze the contribution of different
measurements. Based on this analysis, we show that it is in-
deed possible to use instantaneous measurements collected in
the cellular network and on the mobile to predict throughput,
with a reasonable accuracy. We show that combining physical



layer measurements from the mobile with measurements from
the cellular network enables a much better prediction.

II. RELATED WORKS

Over the years, different methods have been proposed to
estimate and predict the available bandwidth in a computer
network (see, for example, the surveys by Prasad et al.
[3] and Chaudhari and Biradar [4] and references wherein).
These methods exploit timing or other characteristics of the
packets belonging to a connection in order to estimate the
available capacity. In other words, they can work only after
the connection has been established. Instead, we are interested
in predicting the available capacity before a connection is
established, therefore we cannot use these solutions.

Our work is more closely related to studies that have
shown that it is possible to predict the data-rate of a cellular
connection by using measurements collected at the physical
layer [2, 5–7]. Along similar lines, some authors have incorpo-
rated such data-rate predictions into adaptation algorithms for
video transmission [8–10]. The key element shared by these
papers is that, in cellular networks, UEs and base stations
periodically exchange radio channel measurements, which are
used by the base station to make scheduling decisions. To a
varying degree, these papers propose to propagate this infor-
mation to other layers and/or entities. For instance, CQIC [2]
presents a new transport layer protocol based on a cross-layer
design. While such an approach is possible, it calls for major
changes, not only in the mobile nodes and in the cellular
network but also in the Internet at large.

Our approach is not as radical: we collect data that are
already available today in production networks and terminals.
One key difference is that we propose to collect data from both
user terminals and base stations. These measurements can be
collected and combined by an ad-hoc element in the cellular
network, similarly to what proposed by the EONA frame-
work [11] or the DASH-Aware Network Element (DANE)
element in the recent Server and Network Assisted DASH
(SAND) standard.

III. INPUT DATASET

A. Measurement Campaign

We collected the data used in this paper thanks to 60
volunteers who have installed a dedicated application [12]
on their UE and used it for two weeks, in February 2016.
Throughout the day, as long as the terminal is turned on, the
application periodically downloads a file from a remote server,
using a production cellular network. The size of the file is
32 Mbits. The file download was done only when the cellular
network used Long Term Evolution (LTE) technology. The
server is in a well-provisioned data-center (in other words, the
server cannot be the bottleneck of the connection). Figure 1
shows the different elements involved.

Every time a UE downloads the file, it generates an entry.
This entry contains a timestamp and the time it took to
download the full file, which we convert into the achieved
throughput. It also contains several measurements logged from
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Fig. 1. Overall architecture of our data collection campaign

the UE Operating System (OS) and from the Radio Access
Network (RAN) management system. We detail some of them
in Section III-B below.

Finally, we filtered out the entries so that the entries
having one or multiple missing values and the entries that
used multiple base stations (i.e., handover) are rejected. We
obtained the entries of 31 volunteers, corresponding to 5,700
downloads on 350 different cells.

B. Dataset Description

We detail here the variables grouped into four families that
we use as inputs of the prediction algorithm.

UE Categories and Cell Frequency Band LTE2600 and
LTE800 base stations respectively correspond to cells using
2.6 GHz and 800 MHz frequency bands. LTE defines UE cat-
egories, which determine their performance specifications and
enable base stations to be aware of their expected performance
level. Only categories 3 and 4 have been used.

Physical Layer (Radio) On the UE we collect (i) Reference
Signal Received Power (RSRP) the reference signal power
across the channel bandwidth; and (ii) Reference Signal
Received Quality (RSRQ) the ratio between Reference Signal
Received Power (RSRP) and RSSI multiplied by the number
of resources blocks allocated to the UE.

Context Information Intuitively, the awareness of the con-
text in which the download operation occurs can help to
predict QoS. Context awareness has been used in various
other applications [13, 14]. In this paper, we consider the
following indicators: (i) Indoor/Outdoor, an heuristic based
on the number of visible GPS satellites from the UE reports
whether the UE is indoor or not; (ii) Distance to cell based
on the GPS coordinates provided by the application and a
network topology database; and (iii) Speed estimated thanks
to the GPS and the accelerometer.

RAN Measurements Operators use Network Manangement
System (NMS) to monitor their networks by collecting raw
counters of network events, typically aggregated over a period
of a fifteen minutes. We have studied tens of KPIs, intuitively
linked to the throughput, and we have concluded that the most
relevant metrics are: average cell throughput, average number
of users on the cell, BLER of the cell and Radio Resource



Control (RRC) setup success rate.

IV. PREDICTION MECHANISM

In this part, we study which data are correlated with
throughput and whether combining several data in inputs
improves the throughput prediction.

A. Methodology

We used a Random Forest algorithm [15] for the learning
technique. We used a K-fold method [16] with K = 10 for
validation. It consists in dividing the set of entries into 10 ran-
domly chosen subsets. Then we use 9 subsets to learn the best
parameter settings for the predictor and the remaining subset
is used as a test set. This well-known methodology enables to
check if a model can accurately predict the throughput for a
new entry.

The predictors are built as follows. First, we always in-
clude the UE category and the cell frequency band. Then,
we consider the families of available data as described in
Section III-B: Context, Radio link, and RAN. We look at
all the configurations of availability for each family. Let i be
an entry of our measurement campaign. Let yi be the actual
throughput of the download operation related to i. For each
predictor, the algorithm predicts the throughput ŷi and we
compare the predicted throughput ŷi to the actual achieved
throughput yi.

B. Performance Metrics

We have selected the two metrics, presented in Table I,
among those commonly used to evaluate the results of pre-
diction algorithms:

• The coefficient of determination, R2, represents the per-
centage of the variance of the throughput explained by
the predictor. It is calculated as follows: R2 = 1 −∑n

i=1(ŷi−yi)
2∑n

i=1(ȳ−yi)
2 , where ȳ is the mean throughput.

• The median absolute error ratio, Ēi, is the error ratio
that half of the predictions reach. The error ratio is
measured by the absolute value of the difference between
the predicted and the actual throughput, divided by the
actual throughput.

To complete these results, we depict in Figure 2 the Empiri-
cal Cumulative Distribution Function (ECDF) of the prediction
error ratio. We focus on the three main predictors: Radio-only,
RAN-only, and Radio and RAN.

C. Results

Regarding the accuracy of the prediction, the results that we
obtain (especially a cross validated coefficient of determination
at 0.85 and a median error ratio at 0.1) are equivalent to
much more sophisticated non-instantaneous techniques [17].
Our study thus reveals that instantaneous prediction based on
data that are already available at the device and at the oper-
ator enables a suficient accurate prediction to allow content
providers to select a class of service for each end-users.

The analysis of the best predictor should balance the
accuracy (the higher the better) and the number of input

TABLE I
COMPARISON OF DIFFERENT PREDICTORS

Predictor # variables # entries R2 Ēi

x = UE cat. + Cell band 2 5757 0.39 0.28
x + Radio 4 4677 0.70 0.19
x + RAN 6 2842 0.71 0.17
x + Context 5 3827 0.65 0.20
x + Radio + RAN 8 2626 0.85 0.11
x + Radio + Context 7 3193 0.81 0.13
x + RAN + Context 9 1871 0.74 0.15
x + Radio + RAN + Context 11 1813 0.84 0.10

Fig. 2. Cumulative distribution function of error rate

data (the fewer the easier to implement). The first line of
Table I shows that the cell band and the UE category do not
enable an accurate prediction with our supervised learning
technique. The context information allows an improvement,
but the two main families of collected data that lead to a more
accurate prediction are RAN and Radio link (the coefficient
of determination is 0.70 and 0.71 respectively). Second, both
RAN and Radio are complementary input data since the
combination of both increases the R2 to 0.85 and limits the
median error ratio to 0.1.

V. DISCUSSION

The achievable throughput of a connection over a cellular
network depends on the performance of all the components
involved in the transmission: the mobile device, the radio link,
the cell capacity, the core network, and even the server of the
content provider. A commonly accepted claim is that the net-
work operator and the content provider over-provision the core
network and Content Delivery Network (CDN) respectively so
that the bottleneck is located in the last-mile. If this is indeed
the case, predicting the data rate in the last-mile is equivalent
to predicting the end-to-end data rate.

Some researchers have also studied the case where the core
network [18] or the CDN [19] are under-provisioned, in which
case the bottleneck is not in the last-mile. In this case, predict-
ing the data rate on the wireless link is not enough to predict
the end-to-end rate but such a prediction can still be exploited
by combining it with information related to the status of the
core network and the CDN. Typically, since content providers
now use several CDNs [20] to deliver content, specific CDN
monitoring solutions emerges. It would therefore be possible



to integrate the results of these monitoring solutions as inputs
of our throughput prediction algorithm.

Another source of improvement for our algorithm is to use
other types of information related to the mobile phone of the
user. At the physical layer, the reception sensitivity and the
transmission power are two variables that can impact the QoS.

Finally, a limitation of our study is the relatively poor
availability of radio link information. The measurements about
radio link are accessed by the mobile device OS through
specific Application Programming Interfaces (APIs). Unfor-
tunately, OS developers increasingly restrict these OS APIs.
The Minimization of Drive Test (MDT) standard [21] can fix
this problem by allowing the network operator to access the
radio link information for each subscriber.

VI. CONCLUSION

Predicting a transmission throughput through cellular net-
work using information available before the connection is
a challenge. Our results confirm the correlation between
throughput and both physical layer and access network data.
We highlight how complementary are these inputs, which
call for a better coordination between phone manufacturers,
network operators and content providers. In our study, we col-
lected information about the user context, cellular link quality,
and access network performance data. These data are available
before the connection at the condition that network operators
and content providers share information. With a supervised
learning technique, we have shown that it is possible to get
an accurate prediction, which has the potential to help content
providers to set their adaptive technique at the very beginning
of the delivery. Our future work include the design of the
collaboration between operators and content providers.
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