
Monitoring the Network Monitoring System:
Anomaly Detection using Pattern Recognition

Maha Mdini, Alberto Blanc, Gwendal Simon
IMT Atlantique, France

{firstname.lastname}@imt-atlantique.fr

Jérôme Barotin, Julien Lecoeuvre
Astellia, France

{j.barotin, j.lecoeuvre}@astellia.com

Abstract—For a successful and efficient network supervision,
an Anomaly Detection System is essential. In this paper, our
goal is to develop a simple, practical, and application-domain
specific approach to identify anomalies in the input/output data
of network probes. Since data are periodic and continuously
evolving, it is not possible to use threshold-based approaches.
We propose an algorithm based on pattern recognition to help
mobile operators detect anomalies in real time. The algorithm
is unsupervised and easily configurable with a small number of
tuning parameters. After weeks of deployment in a production
network monitoring system, we obtain satisfactory results: we
detect major anomalies with low error rate.

I. INTRODUCTION

Mobile operators exploit Anomaly Detection Systems
(ADSs) in their networks to detect and report any anomaly
as fast as possible. Since mobile networks are getting more
complex, ADSs have become more prone to failures, which
can lead to a Quality of Experience (QOE) degradation for the
customers. Monitoring the network monitoring system is thus
critical to ease network troubleshooting.

Our goal is to assist network administrators in the task
of investigating failures. Since both the network and the
monitoring system are complex, determining whether the root
cause of a reported anomaly is localized in the monitoring
system or in the cellular network is not straightforward. The
investigation task is hard and time consuming. For this reason,
we worked on automating the ADSs monitoring.

We discuss in Section II the existing anomaly detection al-
gorithms, but none of them addresses all the requirements that
are specific to a monitoring systems. First, the ADS must use
few computational resources. Second, it must not be perturbed
by periodic variations or by the normal increase in traffic
volume. Third, it must have few configuration parameters. This
last requirement is essential for systems that are meant to be
used in production environments.

In this paper, we propose an ad-hoc solution to the network
anomaly detection problem, called Watchmen Anomaly De-
tection (WAD). WAD runs in real time on data coming from
monitoring devices, such as network probes measuring traffic
throughput on network interfaces. WAD applies a specific
transformation highlighting abrupt changes to these measure-
ments. Then, based on this transform, it creates reference pat-
terns describing data in normal state. Afterwards, it measures
the gap between the reference pattern and real time data. If
the gap is large, the administrator is notified about an anomaly

occurring in the related equipment. For example, a network
administrator can easily diagnose a Mobility Management
Entity (MME) overload due to a specific event involving a
large number of people (e.g., concert, sport match) by being
alerted of an abnormal rise of the number of Call Data Records
(CDRs) in the input of the probe monitoring this MME.

The paper is organized as follows: We present the state
of the art in Section II. In Section III, we explain the
mathematical basis and the architecture of WAD. Then, we
demonstrate the robustness of our solution and compare it with
some reference techniques. We conclude with our main results
and a brief discussion of future work.

II. RELATED WORK

Classification versus Regression Problems When it comes
to anomaly detection, one may think that this issue is a
classification problem. Anomalies can been seen as points
belonging to an outlying cluster. In this case, one can use k-
means and related algorithms [1, 2]. Since partitioning data
into an anomaly-free cluster and an anomalous one is not
always possible [3], k-means is often paired with decision
trees [2]. And as the decision tree rules are based on the results
of the k-means clustering, this can lead to an unacceptable
global mis-classification.

In the case of time series, the Symbolic Aggregate Ap-
proximation (SAX) algorithm [4] can be an efficient solution,
however, it has some limitations when applied to periodic data
where certain patterns considered as normal in a given part of
the period can be considered as anomalies in another one.
SAX, which “does not keep track of time”, does not detect
these anomalies. That is why, in our solution, we maintain our
focus on the temporal dimension of data.

Anomaly detection in time series can also be addressed as a
regression problem, by first determining an acceptance interval
for future values and then by declaring as anomalies all the
points outside the interval. Autoregressive Integrated Moving
Average (ARIMA) models are accurate regression algorithms,
which have been successfully used for anomaly detection [5,
6]. However, these models require significant computational
resources, which is not acceptable in highly dynamic systems
such as network ADSs. Similarity, we created a predictive
model but unlike ARIMA, WAD implements a simple data
transformation that is computationally inexpensive.

Another approach to the anomaly detection is based on
Principal Component Analysis (PCA). Lakhina et al. [7]
showed how PCA helps detecting peaks and dips in noisy data.
However PCA remains a linear decomposition and requires the
noise to be linearly separable from significant data, condition
which is not always satisfied [8].

Temporal versus Spectral Approach Anomalies can be
defined as abrupt changes in time series. Such changes are
reflected as high frequencies components. Thus some studies
suggest to use spectral analysis to detect anomalies [9, 10].
Han et al. [9] showed how to detect anomalies using clustering
techniques on the Fast Fourier Transform (FFT) of the time
series. The main weakness of FFT is when one has to find
the time at which each frequency occurs. Thus, the wavelet
transform can be a better choice. Barford et al. [10] explained
how a static threshold is enough for anomaly detection once
one applies the wavelet transform. Unlike [9, 10], we imple-
mented a local transform that involves only few samples. Some
other works go beyond FFT and Wavelet transform, applying
more signal processing transformations such as Hough trans-
form [11] and Hilbert transform [12]. A number of papers deal
with raw data and highlight temporal aspects of data rather
than spectral ones [4, 13]. This approach does not work for
periodic data since a normal value at some point of the period
can be an anomaly at another point.

III. WATCHMEN ANOMALY DETECTION

The WAD algorithm detects anomalies in a cellular network
monitoring system, by analyzing the traffic generated by the
monitoring system itself. We illustrate the overall system
in Figure 1. Each monitored entity generates CDRs, which
are sent to the system monitoring module of the ADS, and
Record Generation Reports (RGRs) to WAD. RGRs are
WAD reports generated from monitor system metrics. RGRs
include the number of CDRs, TCP Data Records (TCPDRs),
the sessions/bearer deciphering rate, etc. The stream of data
logs is a univaraite time series. Since the data come from the
network probes, they are highly correlated with the subscribers
behavior (e.g., they show a daily pattern). In the remainder of
the paper we use a period of one day but WAD works with
any period length. The goal of WAD is to detect anomalies

MME

MME

p1

p2
Core Network

system
monitoring

WAD

ADS

CDR

RGR

Fig. 1: Overall Architecture: two probes p1 and p2 monitor
MMEs and send reports to the ADS

in time series such as peaks, dips and sudden rises and
falls. Those anomalies are caused by erroneously configured
devices, broken equipment, and atypical events (e.g., traffic
increase due to a sporting event), just to name a few. Figure 2
shows the types of anomalies that we want to detect.

Fig. 2: The different anomaly types

WAD consists of two phases: a learning phase and a
detection phase. The learning part is executed once a day (i.e.,
the period of the data). In this phase, we create a reference
model, which is stored in a database. This reference model is
then used in the detection phase, which runs in real time.

A. Learning Phase

Figure 3 shows the four main steps of the learning phase,
whose input is one month of data for each metric. Note
that WAD handles each metric independently of the others.
Future work will cover WAD optimization based on metrics
correlation.

Daily
pattern

DoM
transform

Thresh-
olding

Periodicity
check

Manual
supervision

Database

RGRi NO

YES

pattern

RGRi

pattern
transform

RGRi
transform

pattern
transform

threshold

Fig. 3: The learning phase for a metric RGRi

1) Periodicity Check: We compute the FFT of the time
series to check whether the data is periodic, in which case
there is dominant frequency in the spectrum. To verify this,
we calculate the ratio between the sum of the components
close to the dominant frequency and the sum of the rest of the
components. The ratio should be greater than one otherwise
the noise mask the periodicity. Based on empirical tests, we
took five as the lower bound of the ratio. If a given metric
is not periodic, we ignore it for a day. This metric will be
checked manually by network administrators. This can happen
on freshly installed systems.

2) Daily Pattern: In order to obtain the anomaly free
behavior, we compute a daily pattern for each metric. To do so,
we split our training set into periods and calculate the average
value on each point of the period. In practice, we have one

sample every 15 minutes. We compute the average for all the
days of the month at that time. This way, we get a vector of
values describing the metric average evolution.

We then calculate the Euclidean distances between the
average vector and the periods of the training set. We sort
these distances and discard all the periods whose distances
to the average vector are greater than the 95th percentile.
This way, we rebuilt a training set with no extreme values.
Afterwards, we calculate the average vector of all the periods
of the anomaly-free set. This vector is the metric daily pattern.

3) Difference over Minimum (DOM) Transform: The data
we use for the model generation have to be smooth, since
discontinuities are considered to be anomalies. For this reason,
we need a transform that amplifies jumps and minimizes
smooth variations. To this end, we define the DOM transform
(T) of a function f as:

T (f , L) = d (f (t) , f (t − L))

where d is the continuous extension of f defined as:

f (x, y) =
x − y

min(x, y)

and the lag L > 0 is the order of the transform. This transform
quantifies the jumps in f after L time steps, starting from a
given time t. In the remainder of this paper, we focus on the
transform of first order since it acts like a derivative and it
features that it goes to infinity when there is a peak (or a dip)
and it sticks to small values otherwise.

4) Thresholding: At this point of the algorithm, we measure
the distance between the transformed value of each sample of
the metric and the corresponding (with regard to the time of the
day) transformed value of the pattern. We sort these distances
and we set the threshold to the 99th percentile. We store the
threshold and the DoM transform of the daily pattern in the
database for real time detection.

B. Detection Phase

Figure 4 shows the three main steps of the detection phase,
which runs in real time and compares the incoming sample to
the reference model constructed in the previous phase.

DoM
transform

Distance
computing

Database

Threshold
comparison alarm

no alarm

RGRi
k th log

log
transform

pattern
transform

threshold

distance larger

smaller

Fig. 4: Detection phase for the kth sample of the RGRi

After computing the DOM transform of a new sample, we
calculate the Euclidean distance to the reference pattern for

the same time of the day. If the distance is larger than the
threshold, plus a tolerance band, WAD raises an alarm. The
tolerance band reduces the number of false positives, as there
can be occasional fluctuations that cross the threshold without
being anomalies. Based on empirical observations, we set the
tolerance band to 0.1.

IV. VALIDATION TESTS

The goal of WAD is to be a lightweight solution to detect
anomalies in the monitoring system of a cellular network. We
report in the following some of our main findings after a series
of evaluations, first in the lab based on real data traces, and
then after we installed WAD in the production network of two
operators.

A. Accuracy

1) Lab results: We tested WAD in the lab based on
historical data from an European operator. We worked with the
values of 58 metrics over a month containing 90 anomalies. We
compared our algorithm with two reference solutions: SAX
and PCA. We chose SAX and PCA since they fit our use case:
they are easy to implement and have modest computational
requirements as our solution. We have used the recommended
parameters for each algorithm. For SAX, we used an alphabet
size of 15 and a word size of 4 [4]. We used the PCA
decomposition with four-dimensional original and projection
spaces. We detected anomalies on the fourth component and
we used a threshold equal to the 99.5th percentile of the
data [7].

We evaluated the results in terms of True Positives (TP),
False Positives (FP) and False Negatives (FN). The TP are
anomalies detected by the system. The FP are normal points
erroneously labeled as anomalies. The FN are anomalies not
detected by the system. We also measured the sensitivity,
which is the ratio of correctly detected anomalies to the total
number of anomalies, and the specificity, which is the ratio
of points correctly identified as normal to the total number of
normal points. Table I shows the results of these tests.

Algorithm TP FP FN Sensitivity Specificity

SAX 59 6 31 0.65 0.99
PCA 85 85 5 0.94 0.99
WAD 81 9 9 0.90 0.99

TABLE I: Lab Evaluation Results

The results show that the PCA is a good method to detect
abrupt changes. However, including anomalies in the noise
component implies a high FPs rate. The SAX algorithm
obtains a high FN number since SAX does not keep track
of time. Thus, it considers some behaviors as being normal
although they abnormally took place at an unusual time.

2) Production Network Results: We run WAD for three
months to supervise the network of two mobile operators (in
Europe and Africa). The first operator gave a general positive
feedback, without giving specific numbers. The second one

gave us access to a detailed feedback. In the remainder of this
section, we will refer to these results.

The network administrator selected 18 metrics and provided
feedback about the performance of our algorithm. During the
three months, 83 anomalies occured (among 155 520 samples).
We detected 75 of them, which means we had 8 FN. We also
detected four FP. The sensitivity of the system is equal to 0.90
and the specificity is equal to 0.99. The accuracy of WAD
meets the requirements of both operators.

B. Memory and Computation Needs

WAD has a O(nlog(n)) complexity, as the FFT is the
term with the dominant time complexity. To evaluate its
hardware performance, we installed WAD on a machine with
the following features: 4 Cores, 4GB RAM, 30GB hard drive.
The learning phase takes about 30 minutes to process 850MB
of data. Tables II shows the results of these tests.

CPU Memory

Median Max Median Max
Learning Phase 12% 25% 1.2% 1.6%
Detection Phase 0.1% 2% 0.5% 0.9%

TABLE II: CPU and Memory Usage

Based on these experiments and on the successful deploy-
ment in production networks, we conclude that WAD has
modest requirements in terms of memory and CPU. Con-
cerning the scalability aspect, WAD has low computational
complexity and treats metrics independently. These facts make
WAD easy to deploy on Big Data infrastructures.

C. Discussion

WAD gives promising results in terms of gain of produc-
tivity, time saving, and ease of outage troubleshooting. After
using WAD for a few months, the network administrators of
two cellular operators have highlighted the following aspects.
They have noticed that they do not have to check all the
metrics manually, since they are alerted in real time. They
also save a lot of time and effort in troubleshooting and un-
derstanding issues: WAD helps them localize the problem and
therefore fix broken devices and/or configurations efficiently.
The configuration of our solution is straightforward since
it produces dynamic models and does not require calendar
integration. Finally, as an added benefit, it does not require
a large training set. Nevertheless, our solution still has some
configurability issues that can be improved: The accuracy of
WAD relies on the tolerance band value and the pattern cal-
culation percentiles. Although we obtained satisfactory results
on different data sets with the same parameters, we need to
find a way to automatically compute parameters based on the
variance of the data.

V. CONCLUSION AND FUTURE WORK

Automatic supervision of network monitoring systems and
real time feedback processing is crucial to automate mobile
network troubleshooting. Thus, integrating an ADS based on

Machine Learning techniques, like WAD, within a network
monitoring system seems to be an essential task for the
creation of self healing networks. Our research may contribute
to the definition of basic functions for self-organizing and
more resilient networks.

We are working on improving WAD by using the Hurst
exponent to automatically compute the error term (tolerance
band). We also plan to improve the data transformation.
The DOM transform is finely tuned to amplify the type of
anomalies we want to detect for network monitoring. Ideally,
we would like to be able to automatically generate data
transformation operations that can amplify given events.

BIBLIOGRAPHY

[1] G. Mnz, S. Li, and G. Carle, “Traffic Anomaly Detec-
tion Using KMeans Clustering,” in Proc. of In GI/ITG
Workshop MMBnet, 2007.

[2] A. P. Muniyandi, R. Rajeswari, and R. Rajaram, “Net-
work Anomaly Detection by Cascading K-Means Clus-
tering and C4.5 Decision Tree algorithm,” Procedia En-
gineering, vol. 30, 2012.

[3] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly
Detection: A Survey,” ACM Comput. Surv., vol. 41, no. 3,
2009.

[4] E. J. Keogh, J. Lin, and A. W. Fu, “HOT SAX: efficiently
finding the most unusual time series subsequence,” in
Proc. of IEEE ICDM, 2005.

[5] H. Z. Moayedi and M. A. Masnadi-Shirazi, “Arima
model for network traffic prediction and anomaly detec-
tion,” in Proc. of IEEE ISCIT, vol. 4, 2008.

[6] E. H. M. Pena, M. V. O. de Assis, M. Lemes, and P. Jr,
“Anomaly detection using forecasting methods arima and
hwds,” in Proc. of IEEE SCCC, 2013.

[7] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing
network-wide traffic anomalies,” in Proc. of ACM SIG-
COMM, 2004.

[8] H. Zou, T. Hastie, and R. Tibshirani, “Sparse Principal
Component Analysis,” Journal of Computational and
Graphical Statistics, vol. 15, no. 2, 2006.

[9] T. Han, Y. Lan, L. Xiao, B. Huang, and K. Zhang,
“Event detection with vector similarity based on fourier
transformation,” in Proc. of IEEE ICCSSE, 2014.

[10] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal
analysis of network traffic anomalies,” in Proc. of ACM
SIGCOMM Workshop IMW, 2002.

[11] R. Fontugne and K. Fukuda, “A hough-transform-based
anomaly detector with an adaptive time interval,” in Proc.
of ACM SAC, 2011.

[12] A. Subbu and A. Ray, “Space partitioning via Hilbert
transform for symbolic time series analysis,” Applied
Physics Letters, vol. 92, no. 8, 2008.

[13] M. Thottan and C. Ji, “Anomaly detection in IP net-
works,” IEEE Trans. Signal Processing, vol. 51, no. 8,
2003.

